Subject Code: GEC230
Level: 2
Contact Hours: Lect:28 Tut:14
Student Effort Hours: 120
Assessment Method: Coursework 100%
Credit Value: 3
Pre-requisites: Nil
Co-requisites: Nil
Exclusions: Nil
Subject Leader/Lecturer/Dept.: (GEC)

Subject Aim:

This subject is intended to:

1. Scientists point out that as a global civilization, we are living in a most peculiar point of time in history, we either change our behavior or there will be no future history! The major goal of this subject is to empower the student, regardless of their future career path, to take on the challenge of our times, to roll up their sleeves and participate in helping to turn this around, to do what the poet Gary Snyder calls “the real work”, to try and answer the question: “What is sustainable living?”

Learning Outcomes:

Students will demonstrate their ability to:-

This subject will introduce the student to the reality of the natural world of which they are an intimate reflection. On successful completion of this subject, students are expected to:

1. understand and apply science as a way thinking;
2. exhibit systems thinking;
3. have a basic understanding of the origins of the Earth and its particular role in our solar system as the cradle of life;
4. understand the processes of evolution and mass extinction in shaping life on Earth;
5. understand the natures of ecosystem, biome, and biodiversity;
6. understand the natural history of the human species;
7. understand in broad terms the historical trends of collective human behaviour;
8. appreciate the peculiar point of time we live in and its fundamental challenge; and
9. understand different ecological perspectives, in particular as analyzed from the point-of-view of science, and what they have to offer in terms of insight and solution.

Brief Syllabus Content:

1. Introduction

2. The Scientific Method
 - Empiricism
 - Theory
 - Dialogue

3. The Natural History of Planet Earth
 - Geo-history, Evolution, and Mass Extinctions
 - Evolution by Natural Selection
 - Hydrological and Mineral Cycles
 - Ecosystems and Their Dynamics
 - Biomes and Biodiversity

4. The ABC’s of Human Impact
 - Human Evolution: Challenge, Change, and Migration
 - Ecological Footprint

Teaching activities: Lecture (LT)/Tutorial (TU)/Seminar (SM)/Drawing (DW)/Laboratory or Practical (LB)/Studio (ST)/Workshop (WS)/Project (PJ)/Field Study (FS)/Guided Study (GS)/Visit (VS)
Brief Syllabus Content (Cont’d)

5. The Problem of Human Population
 - Limits and Taboos
 - History of Dealing with the Problem
 - Malthus and His Legacy
 - Optimism
 - Exponential Growth
 - Systems Thinking
 - Life on Earth Reviewed
 - Hubbert’s Pimple

6. The Search for Solutions
 - Nuclear Power
 - Carrying Capacity
 - The Unmanaged Commons; The Double C-Double P Game
 - Deep Ecology

Learning and Teaching Approach (tasks and activities designed to achieve learning outcomes):

The analytic procedure of the scientific method will be emphasized. It will be demonstrated throughout as the means by which we can come to know so much about ourselves and the world around us. In the modern age, it is also the driving function of the technology that is being used to damage our all too vulnerable world. By virtually any meaningful measure, our current civilization is not sustainable. How can we do better? This subject looks in detail into what science can tell us about our behavior and its affect on the biosphere. Along the way, it examines many different perspectives in the light of scientific understanding. This is done through both participatory lectures, based upon pre-assigned readings as well as highly interactive tutorials. Emphasis will be placed on the student developing a greater sense of community with nature. Throughout the semester, students will participate in exercises that not only teach ecology but learning-to-learn so as to better prepare themselves for success in the university and after graduation.

Tutorials are devoted to a series of computer-based ecosystem models culminating in the student developing an intuitive understanding of system dynamics in general, not just limited to ecosystems. The following is an indicative breakdown:

1. Introduction to Ecosystems
2. Ecosystems Modeling
3. Computer Simulations
4. Model AUTOCYCL
5. Model SLOREN
6. Model INTERACT
7. Model COOP

Assessment strategy (assessment of student performance resulting from learning tasks):

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial Performance</td>
<td>35%</td>
</tr>
<tr>
<td>Participation</td>
<td>25%</td>
</tr>
<tr>
<td>Mid-term Quizzes</td>
<td>40%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Reading List:

Essential Reading

Reading List: (Cont’d)

Reference List

2. AUTHOR. (2000). *Agenda 047 (II) Sustainability ... A Community Dialog* Hong Kong: Friends of the Earth.

