- process innovations in collaboration with stakeholders
- search for applied solutions to construction contracting
- regulatory control for an effective delivery of a satisfactory built environment.
Contractual & Regulatory Innovations

<table>
<thead>
<tr>
<th>Name</th>
<th>Research interests and area of expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-ordinator
Tel: (852) 2766 5800
Fax: (852) 2764 5131
bzedchan@polyu.edu.hk</td>
<td>Policy and regulatory framework for property development and building users, specifications and standards for green/healthy building, construction law, innovative contracting, and dispute management</td>
</tr>
<tr>
<td>Prof. Edwin H.W. Chan
BA(AS)(Hons), MA(Arch), LLB(Hons), PgD(PRC Law), PhD, Barrister Finals, MEng, F.FPM, FHKIArb, MRICS, RIBA</td>
<td></td>
</tr>
<tr>
<td>Ir. Prof. Albert P.C. Chan
MSc(Aston), PhD(S.Aust), FHKIE, MAIPM, FCIOB, FAIB, FHKCM, MIEAust, AAIQS, MRICS, RPE(Bldg)</td>
<td>Project management, international construction projects, construction engineering management, construction procurement, and construction safety</td>
</tr>
<tr>
<td>Prof. L.Y. Shen
BSc, PhD</td>
<td>Risk management for construction and real estate, sustainable construction, and competitive strategy for construction business</td>
</tr>
<tr>
<td>Dr. Daniel W.M. Chan
BEng(Hons), PhD, MAPM, MHKICM, MASCE, ICIOB, AMAIB</td>
<td>Construction time performance, procurement systems, project partnering and strategic alliances in construction, construction site safety management, public private partnership, guaranteed maximum price, and target cost contracting</td>
</tr>
<tr>
<td>Dr. Martyn J. Hills
CertEd, MSc, PhD, MCIOB, AIMM, HonFICW, HonFHKICW</td>
<td>E-Learning, dispute resolution, and simulation modelling</td>
</tr>
<tr>
<td>Dr. Patrick T.I. Lam
PhD, MSc, Associateship(HKPoly), Dip. Finance, MHKIS, MHKIE, MHKICM, MSISV, MSIArb, MRICS, MCIOB, RPE, RPS, CCE</td>
<td>Project financing, construction contracts and specifications, quality and buildability issues, and dispute resolution</td>
</tr>
<tr>
<td>Dr. Chun-Ho Liu, BEng(Hons), PhD, MAWMA, MASME</td>
<td>Sustainable building, standards for indoor air quality, and thermal comfort</td>
</tr>
<tr>
<td>Dr. Bo-Sin Tang
BSocSc(Hons), MSc, MBA, PhD, MRTPI, MHKIP, RPP, MRICS</td>
<td>Land use planning practices, development control, property development, market institutions, behaviours and changes</td>
</tr>
<tr>
<td>Dr. Andy K.D. Wong
AP(HK), PhD, MCIOB, MHKIE</td>
<td>Contract administration and contract claims</td>
</tr>
<tr>
<td>Mr. Robert Morris, JD</td>
<td>Governance of industry, PRC real estate law, and comparative construction/building law</td>
</tr>
<tr>
<td>Ms. Sandy L.Y. Tang
M. Urban Design, MHKIS, MRICS</td>
<td>Bidding and cost management, and knowledge management</td>
</tr>
<tr>
<td>Mr. Anthony K.H. Wong, BSc(Econ)(Hons), LLB(Hons), PCLL, LLM, LBIDST, MCIH, ACIS, ACES, MCIArb, Solicitor</td>
<td>Property management, dispute resolution, estate agency, building law, institutional analysis of real estate, and application of laws in construction and real estate</td>
</tr>
</tbody>
</table>
Research Areas
1. Conduct applied research on process innovations for construction contracting and regulatory control.
2. Study the application of international practice and theory on contract and dispute management.
3. Reform legal control in collaboration with stakeholders.

Consultancy Services
1. Regulatory reform for property development and users.
2. Innovative contracting and dispute resolution.
5. Construction quality assessment.
6. Standards for indoor air quality (IAQ) and thermal comfort in/around buildings.

Future Development
Development targets
Through process innovations in collaboration with stakeholders, search for applied solutions to construction contracting and regulatory control for an effective delivery of a satisfactory built environment.

Key topics to be completed/developed
1. Construction contracting strategy.
2. Dispute management.
3. Professionalism and practice.
4. Buildability improvement.
5. Green and sustainability building specifications.
7. Building regulations and public health.
8. Regulatory control for a dense urban environment.
Research Framework for Contracting Strategy
(Edwin Chan 2003)

WHAT PRICE?
Contract Sum (Cost)
Total Development Period
Requirements (Client’s Brief, Design and Construction)
- Separate Design and Construction?
- Full information for cost certainty and avoiding dispute?
- Get the most competitive price?

<< TIME >>
DESIGN >>> How to reduce time? <<<BUILD

Save Development Time by Overlapping?
DESIGN Legal BUILD
Liability in Design/Buildability?

Integrated?
What information is available?
How to find the best D/B contractor?
How to ensure quality is delivered?

<< Building Control >>

WHO SUPERVISE CONSTRUCTION?
- Are the works well defined?
- Conflicts in the roles of the supervisor/designer?
- Trust/independence of supervisor?
- Who know the design intention best?
- Clients Requirements may change during contract period?

AVOIDANCE PROVISIONS: Possible Disputes Between Client / Architect / Contractor

DISPUTE RESOLUTION (DRM): What Dispute Resolution Methods in Contract
Solutions Implementation for Healthy Buildings in Hong Kong

Steering Group: Andrew Baldwin, Thomas Wong and Nicholas Yeung

Collaborative research project with industry and partially funded by CII-HK

Abstract

The recent outbreak of the atypical pneumonia, commonly known as SARS, has led the research community to focus on the importance of a healthy built environment. The Construction Industry Institute Hong Kong (CII-HK) and the Faculty of Construction and Land Use (FCLU) of The Hong Kong Polytechnic University (HK PolyU) have promptly developed a joint research project entitled Solutions Implementation for Healthy Buildings in Hong Kong. This project aims to identify and evaluate those factors that need comprehensive consideration and to develop guidance for the implementation of healthy residential buildings in Hong Kong, so as to avoid the risks of transmitting communicable diseases in the future. This study adopted a holistic approach to ensuring that all aspects, including government regulatory framework, design standards, construction quality, technology, social acceptance and economic viability, were critically considered and well-balanced. The specific objectives of the project are to:

1. Identify and evaluate those factors that need comprehensive consideration.
2. Develop guidance for the implementation of healthy residential buildings in Hong Kong, so as to avoid the risks of transmitting communicable diseases in the future.
3. Propose a control framework, mandatory or self-regulatory, with full consideration of fairness, economic viability, and administrative ease.

To ensure thoroughness and applicability, the study emphasizes involvement of the industry and the community. Inputs from industry are provided by the CII-HK’s Task Force. The Task Force has 9 experienced practitioners and academics from the Hong Kong Housing Society, Baker & McKenzie, Buildings Department, Rocco Design Ltd., Swire Properties Ltd., Housing Department, CII-HK, Ryoden Engineering Co. Ltd., and Department of Community Medicine, the University of Hong Kong.

This project was completed in December 2005. The findings formulate a holistic approach to the establishment of guidance for building design standards, construction quality, regulation frameworks, and maintenance strategies. The recommendations are socially and economically acceptable for implementation of environmentally healthy buildings.
This project demonstrates a representative example of how academia, industrial organizations and the community can work together to serve Hong Kong. The findings will benefit the community and initiate new research directions as well.

Key recommendations of the project

The key recommendations made in the project, taking into account the feedback from industry, are as follows:

General considerations

Although it is unlikely to establish a direct relationship between building parameters and occupants’ health, regression analysis indicates a statistically significant correlation between residents’ health and the built environment, in particular:

1. The building orientation.
2. The elevation of the flat above ground level.
3. The immediate outdoor environment of the flat, e.g. facing busy roads.

Indoor environmental quality control

Buildings should be designed and constructed for minimum air leakage provided that purposely-designed features are included to provide a desirable level of natural ventilation. The re-entrant of a residential building is recognized as a contaminated area that should be used for air exhaust only. To achieve this goal, trickle ventilators could be installed to control “vent-out only” to re-entrants.

Drainage design and installation works

Good housekeeping (e.g. filling floor drain traps periodically) can help to address the problem due to drying out of trap seal in the current drainage design. The current design of floor drain traps should not be revised unless the performance of alternative designs is carefully evaluated. The ‘common trap’ design has been used in various overseas countries for establishing a problem-free and fool-proof design for years, however, its application in Hong Kong should be further explored. The provision of cross vents and the separation of drainage stacks in upper and lower zones are also recommended.

Refuse management systems and property management

An in-depth study on the costs and benefits of Automatic Refuse Collection Systems, (ARCS), and the actual impact of the refuse collection methods on health should be conducted to decide whether ARCS should be promoted in the future.

Implementation

The Research Team suggests that the HKSAR Government should consider the mandatory requirements in the following areas:

1. Provision of a minimum level of natural ventilation rate to habitable spaces under all situations.
2. The provision of openings/windows to the external walls of lift lobbies and common corridors to induce desirable natural ventilation (current guidelines in the PNAP 287 referred).
3. Provision of louvres in every door of toilet/kitchen to facilitate air flow through a desirable path.
4. Separation of drainage stack for lower floors (the lowest 5 floors) for improved safety margin against backflow.

Outcomes and Deliverables:

References

The Roles of Podiums and Building Disposition in Housing-Estate-Scale Air Ventilation

Research Team: Chun-Ho Liu

Research project funded by HK PolyU BRE Departmental Research Grant 2006/2007

Summary

This project aims at investigating the effects of podiums and building disposition on

1. Pedestrian-level wind, turbulence and gust characteristics,
2. Air pollutant behaviors and transport in living zones, and
3. Wind environment and ventilation around and behind high-rise housing estates

in order to improve our living environment. Scientifically, the findings help elucidate the mechanism of housing-estate-scale passive cooling and ventilation in the presence of podiums and high-rise residential buildings from an environmental fluid mechanics point of view. Though high-rise residential buildings and podiums have their unique (commercial and environmental) merits in the dense built environment of Hong Kong, their potential adverse impacts should be addressed before extensive application. Practically, we target at quantifying the drawback of podiums and high-rise buildings related to ventilation and wind environment in living zones so as to provide handy guidelines to developers, urban planners, architects, consultants, building services engineers and policy makers. Eventually, we can utilize the natural resources to improve the sustainability of our living environment.
Optimization Program for the Selection of Dispute Resolution Mechanisms to Resolve International Construction Disputes

Research project funded by RGC CERG

Abstract

The construction industry's problem of finding suitable dispute resolution (DR) procedures is exacerbated when faced with disputes arising from international projects. Under this circumstance, there is a high level of collaboration between multi-national parties from different backgrounds. It is beneficial to all stakeholders to resolve disputes as soon as they arise. There are many DR mechanisms available, ranging from adversarial litigation to amicable settlement. Taxonomy of DR mechanisms and the disputants' perception on the functions of the DR mechanisms are inconsistent, which result in the confusion and mismatch between the DR mechanism and the dispute. Individual DR mechanisms have respective legal issues to be considered that often lead to lawyers taking over DR processes. Hence, there is a need for a decision support system that would allow construction project managers to stay in control and adopt the most appropriate DR
mechanism for a particular dispute. In the light of producing a specific system for resolving international construction disputes in Hong Kong and China Mainland (the Region), this project will combine the Multi-Attribute Utility* technique with theories related to the escalation of disputes and characteristics of different DR mechanisms to develop an Optimization Program (the Program). The Program, comprising a quantitative model for objective scoring and a qualitative verifying checklist, will provide a system for improving rationality when choosing a DR mechanism whilst at the same time recognising that professional judgments and unforeseen factors can only be assessed by the disputants themselves. This study leads to the formulation of the Program that will provide advanced knowledge related to the theoretical and legal framework under which DR mechanisms operate for resolving international construction disputes. Moreover, it will contribute to the body of knowledge in both academic and professional arenas.

Significance of the research

1. The Program comprises a “quantitative scoring model” supported by a “guiding checklist” of qualitative questions that is a useful device assisting construction professionals going through comprehensive and fair-minded considerations to select the most appropriate DR mechanism for resolving disputes in international construction projects in the Region.

2. As to the advancement of knowledge and understanding, this study leading to the formulation of the Program will, the theory and practice of DR mechanisms for international construction projects. Successful research on this project will establish a framework to be adapted for further research on similar topics as well as for specific project types or specific cultural groups.

3. In facilitating effective resolution into construction disputes, this project will contribute to the construction industry in which time and cost can be saved whilst the morale of participants can be maintained until completion of the projects.

4. The project will generate updated DR theories and techniques that will be fed back to the industry through education/training so as to improve the knowledge of potential disputants and harmonize their perceptions in DR.

Aims and objectives

Main purposes

This project is focused on disputes arising from international construction projects in the Region, which usually involve large contract sums and multi-national participants from different backgrounds. The purposes of this research are to (1) advance understanding of the theoretical framework for the escalation of disputes, (2) how to characterize DR mechanisms and (3) how to deploy the mechanisms for resolving disputes in international construction projects. It aims to establish the Program that will direct project managers through a well-guided and rational decision-making process to choose the most appropriate DR mechanism for a particular type of dispute.

* Multi-Attribute Utility is a tool used for facilitating decision-making process which takes multiple factors into account.
Specific objectives
The specific research objectives of this project are to:

1. Examine the characteristics of those DR mechanisms commonly used in international construction projects (e.g. mediation, adjudication, dispute resolution board, med-arb and arbitration, etc.).
2. Determine the differences between DR experts and users in their perception of the functions of DR mechanisms, which contribute to mismatching between the chosen DR mechanism and the dispute in question.
3. Identify the critical selection factors for and logical approaches to DR in international construction projects in the Region.
4. Establish the theoretical framework and related legal issues involved when DR mechanisms are deployed to resolve disputes in international contracts.
5. Optimize the Program to select the most appropriate DR mechanism for a particular type of dispute in international construction projects.

Outcomes and deliverables
1. An Optimization Program to facilitate selection of the most appropriate DR mechanism for a particular type of dispute in international construction projects in the Region.
2. A set of teaching materials for DR theories and practices for tertiary education and industrial training in the Region.
3. Research papers have been produced for publication in international refereed journals as the project proceeds. Research findings will be made available to industry so as to promote the efficacy of DR practice for international construction projects.

Publications
References

Lam, T.I. (1990) A Critical Comparison of Construction Procurement and Contracting Systems in Japan, Singapore, Malaysia and Hong Kong, by the HK Polytechnic under copyright approval by the College of Estate Management, U.K.

A Model for Buildability Assessment in Hong Kong

Research project funded by RGC CERG

Abstract

The recent report of the Construction Industry Review Committee (Tang 2001) has highlighted poor buildability as one of the manifest problems in the local construction industry. Some strategic measures, which include increased use of prefabricated, standardised, and modular components, have been suggested to improve buildability. These are in line with the measures being put into practice by overseas countries such as Australia, Singapore, the United Kingdom, and the United States. Amongst these countries, Singapore has taken the most drastic step in legislating for buildability in an attempt to increase productivity of construction and hence reduce reliance on foreign workers.

As explained in that report, the Construction Industry Review Committee does not favour a legislative approach to promote the use of prefabrication and other buildability measures in Hong Kong. Instead, the Committee urges the clients in public sector, particularly the Housing Authority, to lead and quicken the pace of improving buildability. Yet, buildability remains a loosely defined attribute which would not attract focused attention by industry practitioners. In this respect, Singapore has developed and implemented a Buildable Design Appraisal System (BDAS). Whereas in the UK, the Construction Industry Research and Information Association (CIRIA) has commissioned studies to measure the benefits of standardisation and pre-assembly. In the Hong Kong context, the proponents of this research believe that the adoption of a quantified assessment system would instil better understanding of the buildability concept as well as establish the fundamentals of an incentive scheme for building design teams and clients to improve buildability. Hence, the primary objective of this project is to develop a model for buildability assessment for the Hong Kong construction industry.

Whilst prefabrication and precasting methods are emphasised in the predecessors’ buildability assessment schemes, the wider issue of constructability, which embraces the integration of construction knowledge and experience into all stages of the project life cycle (Construction Industry Institute Australia 1996), has been studied in this research.
As such, factors including innovation, site specific factors (e.g. accessibility) and building services aspects have been called into play when the assessment system for Hong Kong was devised (which will make this scheme distinctive from others). The proposed buildability assessment model has been developed using the Analytical Hierarchy Process and validated by a case-study approach.

Research aims and objectives

This research is aimed at:

1. Establishing a mechanism to measure, compare, and appraise the buildability of different building designs
2. Formulating the essential yardstick for an incentive scheme so as to enhance the buildability of building designs in Hong Kong.

To achieve the above aims, the research objectives are to:

1. Identify attributes affecting buildability of building designs in Hong Kong.
2. Identify physical construction features commonly used in Hong Kong (including in-situ methods and prefabricated methods).
3. Identify non-physical features contributing to good buildability in Hong Kong.
4. Formulate a ranking system for the physical and non-physical features satisfying buildability attributes.
5. Devise a scoring system based on the above ranking system.
6. Validate the buildability assessment model and study the current levels of buildability in Hong Kong.

Project status

This project was completed in December 2005.

Outcome and deliverables

Refereed journal papers

Refereed conference papers

Refereed monograph

CD-ROM

Benchmarking Buildability by Implementing the Buildability Assessment Model in Hong Kong

Research project funded by RGC CERG

Abstract

In response to the findings of the Construction Industry Review Committee (CIRC 2001), which highlighted poor buildability as one of the obstacles for the overall performance improvements of the Hong Kong construction industry, a research proposal for developing a Model of Buildability Assessment was submitted to and accepted by the Research Grants Council, Hong Kong. As an assessment mechanism enabling benchmarking of buildability of designs, the Assessment Model incorporates features tailor-made for the local construction industry.

The newly developed Buildability Assessment Model is then proposed to be used to establish benchmarks. The benchmarks will serve as part of an incentive programme to be led by design professionals to gear themselves up for achieving buildable designs. Alternatively, the Buildability Assessment Model can be used by third parties (e.g. clients or public agencies) to exert market forces on designers to remove their inertia in producing more buildable designs. With the benefits of hindsight from Singapore, it is speculated that the latter measure may be more effective in producing a paradigm lift of buildability in Hong Kong. This project will thus establish the benchmarks of buildability in Hong Kong for comparison with future projects. Moreover, it will test the hypothesis that benchmarking is essential for improving buildability.

Although a market-driven approach for improving buildability is preferred, the possibility of a regulatory framework will be explored. Subject to the difficulties to be met and resolved when the Assessment Model is implemented into practice, a design process system will be established for designers’ self-assessment to optimise buildability of their designs. Meanwhile, strategies for design management and procurement arrangement related to using the Assessment Model will be formulated to integrate the fragmented aspects of design and construction, which are the undesirable characteristics of construction industry to-date.

Aims and objectives

This project aims at:

1. Identifying the benefits of buildability in terms of time, cost, quality, and safety.
2. Identifying the potential difficulties for implementing the Buildability Assessment Model.
3. Formulating strategies for implementation of the Assessment Model to foster and enhance buildability of building designs in Hong Kong and testing whether these strategies would be successful.
4. Measuring benchmarks as they currently exist in Hong Kong.

To achieve the above aims, the objectives of this project comprise:

1. Establishing if there is a correlation among time, cost, quality and safety performance of representative projects with buildability.
2. Identifying the resistance and difficulties faced by designers in the implementation of the Model.
3. Identifying the hindrances in producing more buildable designs in the Hong Kong construction industry.
4. Formulating measures to bring about necessary changes in construction procurement and regulatory systems with emphasis on removing the barriers for designers and industry to improve buildability in designs.

Project status

The research works of this project are anticipated for completion by December 2006.

Deliverable and outcome

As the project is still ongoing at the time of preparing this brochure, dissemination is expected after project completion. To date, one refereed journal paper has been accepted for publication and a conference paper has been presented and published as follows:

Refereed journal paper

Refereed conference paper

Evaluation of the Building Laws for Sustainable Dense Development in Hong Kong

Research Team: Edwin H.W. Chan and Bo-Sin Tang

Abstract
This study is originated from a joint research project on a similar topic funded by the University of Hong Kong in which the investigators of this project are the research team members. It is a worthy research topic that could have wide implication. Moreover, a small research project of similar nature proposed by the Principal Investigator was awarded a small amount of starting funding from the BRE Departmental Research Grant in 1998. This study is also a broadened version and a continuation of the small research project funded by BRE. This research project will be a study in response to the pressing need in society on housing supply and quality living environment in the society. It aims to carry out a structured and focused research to review critically the building laws in support of property development in Hong Kong’s dense urban environment.

Objectives of the project
1. Review the current building laws affecting high density property development.
2. Review and understand, in local district scale, the constraints and sustainability for dense urban development.
3. Explore and recommend changes to some development legal control provisions.
4. Identify areas for further research to address sustainability of wider issues.

Outcomes and deliverables
This project was completed with insightful findings. Results and outcomes have been disseminated in the following publications:

Contributed to the development of an inter-active website: “e-Base Knowledge on Statutory Requirements”
Best Practice in Contracting Systems for International Construction Projects in Mainland China

Background

This project is partly in response to a previous invited collaboration from the universities in Mainland China (e.g. North-East Financial University and The Sichuan University). It investigates the international contracting systems (in particular, the FIDIC forms) in China under the World Trade Organization (WTO) environment and the latest Mainland / Hong Kong Closer Economic Partnership Arrangement (CEPA). The research topic was promoted by the Ministry of Construction (MOC) and is a valid and significant research area to be explored. This project will benefit both international and Hong Kong contractors who are preparing to enter the vast China’s construction market. It is anticipated that CEPA, with the aim to promote the joint economic prosperity and development of the Mainland and the Hong Kong Special Administrative Region (HKSAR), will further boost international construction activities in these areas.

Aim and objectives

This project aims to review the current construction contracting systems, in particular those for international projects, in Mainland China under the WTO environment. The key objectives are to:

1. Review the current contracting systems and contractual practice in Mainland China, with special reference to the FIDIC forms.
2. Identify problematic areas in terms of impracticality and incompatibility with local practice in Mainland China.
3. Propose and evaluate potential improvement to the standard contract forms, such as the FIDIC forms, for international contracting in Mainland China.
4. Develop a set of best practice guidelines for international contracting in Mainland China.
5. Identify areas worth for further detailed research studies on the best practice of international contracting in Mainland China.

Significance of the project

Originality

Many studies have been carried out on contracting strategies and international projects. However, there is little, if any, literature on the appropriateness and impact of applying international contract and practice for international projects in Mainland China. This project
reveals this unexplored area that involves study of professional practice and some contractual issues.

Significance

On the academic front, the advancement of knowledge leads to the formulation of a set of good practice guidelines that will provide better understanding on the theory and practice of contract strategies and contract administration for international construction projects in Mainland China. This study is designed to extend our previous works on contract strategy and dispute management (Chan 2002, Chan and Yu 2003). The outcomes of this study will provide the foundation for further detailed studies on the specific requirement for standard form of contract and contract administration of international projects in Mainland China. On the professional front, our research findings are valuable to the construction sectors in Hong Kong and Mainland China with better informing our contract provisions and professional practices.

Outcomes and deliverables

1. Produce a research report to address the objectives of this study, with data analysis and recommendations.
2. Develop a website, for sharing of best practice and an outline of contractual systems for international construction contracting in China.
3. Publish papers.
4. Foster and maintain research collaboration with universities / institutions in Mainland China.
5. Carry out a thorough literature review, to elucidate the issues in this area as well as update teaching and continuous professional development (CPD) training materials.

References
A Framework for the Sustainable Adoption of “Green” Specifications in the Hong Kong Construction Industry

Research Team: Patrick T.I. Lam, Edwin, H.W. Chan, C.S. Poon (CSE) and C.K. Chau (BSE)

Research project funded by HK PolyU Intra-faculty Research Grant

This project is aimed at (1) examining the current status for the adoption of green specifications, (2) identifying the costs, benefits, and barriers in their full-scale use, (3) evaluating the suitability of introducing the currently available green specifications developed overseas in the local context, and (4) establishment of a framework and roadmap for enhancing the sustainability and scope for adoption of a comprehensive set of green specifications in Hong Kong.

Project period
2006 to 2008

Aims and objectives
The aims and objectives of this project are to:

1. Find out the current state of use (i.e., scope and frequency) of “green” specifications in the Hong Kong construction industry particularly those developed locally.
2. Investigate the suitability and feasibility of adapting those “green” specification modules developed overseas in the Hong Kong construction environment.
3. Identify the possible scope, costs, and benefits together with barriers in the adoption of “green” specifications in the local construction sectors.
4. Establish a framework to enhance the sustainability of adopting “green” specifications in the Hong Kong construction industry.

References

