Subject Title: Foundation Biology
Subject Code: ABCT 102
Credit Value: 3

Responsible staff and department: Dr. Johnny C.O. Tang
Department of Applied Biology & Chemical Technology

Pre-requisite: NIL

Learning Activities:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>32</td>
</tr>
<tr>
<td>Tutorial</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
</tr>
</tbody>
</table>

Assessment:

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Assessment</td>
<td>50%</td>
</tr>
<tr>
<td>Examination</td>
<td>50%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Aims:

The lectures aim to explain and discuss the knowledge of biology at foundation level which is essential to proceed to higher level of study in biology-related disciplines.

Learning Outcomes:

After successful completion of this subject, students should be able to appreciate the basic features and integrative nature of different biological components for survival.

Syllabus:

<table>
<thead>
<tr>
<th>INDICATIVE CONTENT</th>
<th>TUITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells:</td>
<td></td>
</tr>
<tr>
<td>Structure and function of the cell</td>
<td></td>
</tr>
<tr>
<td>Biomolecules</td>
<td></td>
</tr>
<tr>
<td>Homeostasis and transport within the cell</td>
<td></td>
</tr>
<tr>
<td>Photosynthesis and cellular respiration</td>
<td></td>
</tr>
<tr>
<td>Cell reproduction - mitosis and meiosis</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8 hours</td>
</tr>
<tr>
<td>Genetics:</td>
<td></td>
</tr>
<tr>
<td>Fundamentals of genetics</td>
<td></td>
</tr>
<tr>
<td>Nucleic acids and protein synthesis</td>
<td></td>
</tr>
<tr>
<td>Inheritance patterns</td>
<td></td>
</tr>
<tr>
<td>DNA technology</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6 hours</td>
</tr>
<tr>
<td>Body Functions:</td>
<td>20 hours</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Organization of human tissues, organs and systems</td>
<td></td>
</tr>
<tr>
<td>Overview of physiological functions:</td>
<td></td>
</tr>
<tr>
<td>Nervous system, cardiovascular system, respiratory system, digestive system, renal system, immune system, endocrine and reproductive systems</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Microorganisms:</th>
<th>7 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria and viruses</td>
<td></td>
</tr>
<tr>
<td>Protozoa</td>
<td></td>
</tr>
<tr>
<td>Algae and fungi</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ecology:</th>
<th>3 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to ecology and populations</td>
<td></td>
</tr>
<tr>
<td>Ecosystems and the biosphere</td>
<td></td>
</tr>
</tbody>
</table>

Textbooks and Reference books:

- Freeman S. Biological science (2nd Edition) Pearson Prentice Hall, 2005
Subject Title: Fundamental Chemistry
Subject Code: ABCT103
Credit Value: 3

Responsible Staff and Department: Dr. C.H. Yeung
Department of Applied Biology & Chemical Technology

Pre-requisite: Nil

Learning Activities:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>36</td>
</tr>
<tr>
<td>Tutorial</td>
<td>6</td>
</tr>
</tbody>
</table>

Total 42 hours

The students are also expected to spend about 80 hours for self-study

Teaching and Learning Approach:

Lectures will provide students with general outlines of key concepts and guidance on further reading. Lectures will be further consolidated through assignments and tutorials.

Students will be assessed by assignments, quizzes as well as an end-of-term written examination.

Assessment:

<table>
<thead>
<tr>
<th>Assessment Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Assessment</td>
<td>60%</td>
</tr>
<tr>
<td>Examination</td>
<td>40%</td>
</tr>
</tbody>
</table>

Total 100%

To pass the subject, students must obtain a grade D or above in both the Continuous Assessment and the Examination.

Aims:

This subject educates student with fundamental knowledge in chemistry. It is also a bridging course for students previously learning chemistry in a language other than English.

The subject has the following objectives:

1. to provide student with a broad fundamental knowledge in chemistry required for the study of science, technology, engineering or related programme.
2. to help student study chemistry effectively in an English-medium learning environment and to acquaint student with the necessary chemical vocabularies.
Learning Outcomes:

Upon completion of this subject, students will be able to:

1. Understand the fundamental principles of chemistry;
2. Have sufficient chemical knowledge for their chosen field of study.
3. Understand and appreciate the chemical terms and principles that they may encounter in written and oral communication.

Syllabus:

<table>
<thead>
<tr>
<th>INDICATIVE CONTENT</th>
<th>TUITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic structure</td>
<td>10 hours</td>
</tr>
<tr>
<td>Electromagnetic radiation, hydrogen spectrum, energy levels, electron spin, quantum numbers, dual properties of matter, wave function and probability, uncertainty principle, charge clouds of s, p, d and f orbits, radial distribution curves, electronic configurations of many-electron atoms, Pauli exclusion principle, Aufbau principle, ionization energy, electron affinity, electronegativity, atomic and ionic radii and periodicity.</td>
<td></td>
</tr>
<tr>
<td>Chemical bonding</td>
<td>6 hours</td>
</tr>
<tr>
<td>Ionic bonds, covalent bonds, dative bonds, metallic bonds, van der Waals forces, hydrogen bonds, concepts of valance bond theory, resonance, molecular shapes by VSEPR method for main group elements,</td>
<td></td>
</tr>
<tr>
<td>Properties of gas, liquid and solid</td>
<td>6 hours</td>
</tr>
<tr>
<td>Gases: gas laws, ideal gas equation, Dalton’s law of partial pressures, kinetic molecular theory of gases, collision frequency, gas diffusion.</td>
<td></td>
</tr>
<tr>
<td>Liquids: viscosity, refractive index, surface tension, vapour pressure and variation of vapour pressure with composition of mixture.</td>
<td></td>
</tr>
<tr>
<td>Solids: amorphous solids, types of crystals, unit cell, co-ordination number.</td>
<td></td>
</tr>
<tr>
<td>General inorganic chemistry</td>
<td>10 hours</td>
</tr>
<tr>
<td>General organic chemistry</td>
<td>10 hours</td>
</tr>
</tbody>
</table>

Textbooks and Reference books:

Essential

Subject Title: Foundation Mathematics for Business
Subject Code: AMA102
Credit Value: 3

Pre-requisite: Nil

Learning Activities:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>28</td>
</tr>
<tr>
<td>Tutorial and Student Presentation</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>42 hours</td>
</tr>
</tbody>
</table>

The lectures aim to provide the students with an integrated knowledge required for the understanding and application of mathematical concepts and techniques. To develop students’ ability for logical thinking and effective communication, tutorial and presentation sessions will be held.

Assessment:

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Assessment</td>
<td>40%</td>
</tr>
<tr>
<td>Examination</td>
<td>60%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

To ensure that students learn and reflect continuously, Continuous Assessment is an important element and students are required to obtain Grade D or above in both the Continuous Assessment and the Examination components. The continuous assessment comprises of assignments, in-class quizzes and tests. The assignments are used to assist the students to reflect and review on their progress. The end-of-semester examination is used to assess the knowledge acquired by the students and their ability to apply and extend such knowledge.

Learning Outcomes:

This is a bridging subject to provide the students with a broad foundation in Mathematics. It aims to prepare the students to study an undergraduate programme in a business related discipline. The emphasis will be on the application of mathematical methods to solving basic mathematical problems.

Upon satisfactory completion of the subject, students are expected to be able to:
1. apply mathematical reasoning to analyse essential features of different mathematical problems such as differentiation and basic probability;
2. extend their knowledge of mathematical techniques and adapt known solutions to different situations;
3. search for useful information and use statistical tables in solving basic statistical problems;
4. undertake continuous learning.
Syllabus:

Functions:
Basic concepts; Mathematical induction; Functions and inverse functions; Elementary functions.

Complex Number:
Trigonometric Equations; Algebra; Geometry; Roots.

Calculus:
Limits; Continuity; Derivatives Techniques of differentiation; Higher derivatives; Maxima and minima; Curve sketching.

Linear Algebra:
Matrices and determinants; Systems of linear equations.

Probability and Statistics:
Descriptive statistics; Frequency distribution; Mean, median and mode; Variance and standard deviation; Probability theory; Discrete and continuous random variables; Normal distribution; Sampling; Hypotheses testing and estimations.

Textbooks and Reference books:

Department of Applied Mathematics Foundation Mathematics 3rd edition The Hong Kong Polytechnic University, 2004

S.L. Myers & K.Y. Ye
Subject Title: Foundation Mathematics I for Science and Engineering
Subject Code: AMA103
Credit Value: 3

Pre-requisite: Nil

Learning Activities:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>28</td>
</tr>
<tr>
<td>Tutorial and Student Presentation</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
</tbody>
</table>

The lectures aim to provide the students with an integrated knowledge required for the understanding and application of mathematical concepts and techniques. To develop students’ ability for logical thinking and effective communication, tutorial and presentation sessions will be held.

Assessment:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Assessment</td>
<td>40%</td>
</tr>
<tr>
<td>Examination</td>
<td>60%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

To ensure that students learn and reflect continuously, Continuous Assessment is an important element and students are required to obtain Grade D or above in both the Continuous Assessment and the Examination components. The continuous assessment comprises of assignments, in-class quizzes and tests. The assignments are used to assist the students to reflect and review on their progress. The end-of-semester examination is used to assess the knowledge acquired by the students and their ability to apply and extend such knowledge.

Learning Outcomes:

This is a bridging subject to provide the students with a broad foundation in Mathematics. It aims to prepare the students for studying an undergraduate programme in Engineering or Science. The emphasis will be on application of mathematical methods to solving basic mathematical problems.

Upon satisfactory completion of the subject, students are expected to be able to:

1. apply mathematical reasoning to analyse essential features of different mathematical problems such as mathematical induction;
2. extend their knowledge of elementary functions and systems of equations to solve simple mathematical problems;
3. appreciate the concept of complex numbers so as to apply to science and engineering problems;
4. undertake continuous learning.
Syllabus:

Functions:
Basic concepts; Mathematical induction; Functions and inverse functions; Elementary functions.

Complex Number:
Trigonometric Equations; Algebra; Geometry; De Moivre’s Theorem; Roots.

Linear Algebra:
Matrices and determinants; Systems of linear equations.

Textbooks and Reference books:

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Publisher</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Applied Mathematics</td>
<td>Foundation Mathematics</td>
<td>The Hong Kong Polytechnic University</td>
<td>2004</td>
</tr>
<tr>
<td>L. Bostock & S. Chandler</td>
<td>Core Mathematics for A-Level</td>
<td>Stanley Thornes</td>
<td>2000</td>
</tr>
<tr>
<td>F.R. Giordano, M.D. Weir & R.L. Finney</td>
<td>Calculus for Engineers and Scientists,</td>
<td>Addison-Wesley</td>
<td>1988</td>
</tr>
</tbody>
</table>
Subject Title: Foundation Mathematics II for Science and Engineering
Subject Code: AMA104
Credit Value: 3

Pre-requisite: AMA103 Foundation Mathematics I for Science and Engineering

Learning Activities:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>28</td>
</tr>
<tr>
<td>Tutorial and Student Presentation</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
</tbody>
</table>

The lectures aim to provide the students with an integrated knowledge required for the understanding and application of mathematical concepts and techniques. To develop students’ ability for logical thinking and effective communication, tutorial and presentation sessions will be held.

Assessment:

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Assessment</td>
<td>40%</td>
</tr>
<tr>
<td>Examination</td>
<td>60%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

To ensure that students learn and reflect continuously, Continuous Assessment is an important element and students are required to obtain Grade D or above in both the Continuous Assessment and the Examination components. The continuous assessment comprises of assignments, in-class quizzes and tests. The assignments are used to assist the students to reflect and review on their progress. The end-of-semester examination is used to assess the knowledge acquired by the students and their ability to apply and extend such knowledge.

Learning Outcomes:

This is a bridging subject to provide the students with a broad foundation in Mathematics. It aims to prepare the students for studying an undergraduate programme in Engineering or Science. The emphasis will be on application of mathematical methods to solving basic mathematical problems.

Upon satisfactory completion of the subject, students are expected to be able to:
1. apply mathematical reasoning to analyse essential features of different mathematical problems such as differentiation and integration;
2. extend their knowledge of mathematical techniques and adapt known solutions to different situations;
3. apply appropriate mathematical techniques to model and solve problems in science and engineering;
4. search for useful information and use statistical tables in solving basic statistical problems;
5. undertake continuous learning.
Syllabus:

Differential Calculus:
Limits and continuity; Derivatives; Techniques of differentiation; Higher derivatives; Maxima and minima; Curve sketching.

Integral Calculus:
Definite and indefinite integrals; Fundamental Theorem of Calculus; Techniques of integration; Geometric and physical applications.

Probability and Statistics:
Descriptive statistics; Frequency distribution; Mean, median and mode; Variance and standard deviation; Probability theory; Discrete and continuous random variables; Normal distribution.

Textbooks and Reference books:

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Publisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Varberg, E.J. Purcell & S.E. Rigdon</td>
<td>Calculus</td>
<td>Prentice Hall</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Bostock & S. Chandler</td>
<td>Core Mathematics for A-Level</td>
<td>Stanley Thornes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F.R. Giordano, M.D. Weir & R.L. Finney</td>
<td>Calculus for Engineers and Scientists</td>
<td>Addison-Wesley</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Subject Title: College Physics I
Subject Code: AP101
Credit Value: 3

Pre-requisite: Nil

Learning Activities:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>28</td>
</tr>
<tr>
<td>Laboratory</td>
<td>9</td>
</tr>
<tr>
<td>Tutorial and Student Presentation</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
</tbody>
</table>

The lectures aim to provide the students with an integrated knowledge required for the understanding and application of Foundation Physics.

Assessment:

<table>
<thead>
<tr>
<th>Assessment Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Assessment</td>
<td>40%</td>
</tr>
<tr>
<td>Examination</td>
<td>60%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Learning Outcomes:

On completing the subject, students will be able to:
1. solve simple problems in mechanics using vector method;
2. apply Archimedes’ principle to solve problems in hydrostatics;
3. use Doppler’s effect to explain changes in frequency received;
4. apply simple laws in optics to explain image formation;
5. explain ideal gas laws in terms of kinetic theory;
6. apply the first law of thermodynamics to simple processes;
7. define electrostatic field and potential;
8. solve problems on interaction between current and magnetic field;
9. apply electromagnetic induction to various phenomena; and
10. describe simple models of the atom and the nucleus.

Syllabus:

1. Mechanics: Vectors; Rectilinear motion with uniform acceleration; Projectile; Newton's laws of motion; Motion under constant force; Momentum, work, energy. Collisions; Hydrostatics and Archimedes' principle.
2. Wave: Longitudinal and transverse waves and equation of traveling wave in 1-D; Doppler effect; Image formation in lenses and mirrors; Microscope and telescope.
3. Thermal physics: Conduction, convection and radiation; Ideal gas and kinetic theory. Work, heat and internal energy; First law of thermodynamics applied to different processes.
4. Electromagnetism: Coulomb's law; Electrostatic field and potential difference; Parallel-plate capacitor and the effect of dielectrics; Magnetic force on moving charge and current; Hall effect; Faraday's law of induction; Lenz's law; Inductors.
5. Modern Physics: Photons and photoelectric effect; Simple model of the atom and the nucleus; Radioactivity; Nuclear fission and fusion.

Textbooks and Reference books:

Giancoli, Physics for Scientists and Engineers, 2000, Prentice Hall

Physics CAI in CD-ROM, 2000, USTC

Computer Simulation System for College Physics Experiment, Version 2.0 for Windows, 2000, USTC

Subject Title: College Physics II
Subject Code: AP102
Credit Value: 3

Pre-requisite: AP101 College Physics I

Learning Activities:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>28</td>
</tr>
<tr>
<td>Laboratory</td>
<td>9</td>
</tr>
<tr>
<td>Tutorial and Student Presentation</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
</tbody>
</table>

The lectures aim to provide the students with an integrated knowledge required for the understanding and application of Foundation Physics.

Assessment:

<table>
<thead>
<tr>
<th>Assessment Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Assessment</td>
<td>40%</td>
</tr>
<tr>
<td>Examination</td>
<td>60%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Learning Outcomes:

On completing the subject, students will be able to:
1. solve problems on rotation of rigid body about fixed axis;
2. define simple harmonic motion and solve simple problems;
3. apply Bernoulli’s equation to simple problems in fluid flow;
4. explain phenomena related to the wave character of light;
5. solve simple problems related to the Carnot cycle;
6. use Gauss’ law in solving problems in electrostatics;
7. determine the magnetic field due to simple current distribution; and
8. use the Bohr model to explain the hydrogen spectrum.

Syllabus:

1. Mechanics: Rectilinear motion under variable force; Circular motion; Newton's law of universal gravitational; Gravitational potential energy; Rotation of rigid body about a fixed axis; Simple harmonic motion; Fluid flow and Bernoulli’s equation.
2. Wave motion: Huygen's principle; Interference and diffraction; Polarization.
3. Thermal physics: Further examples in the first law of thermodynamics; Entropy and the second law of thermodynamics; Carnot cycle.
4. Electromagnetism: Gauss' law; Electrostatic field and potential due to charge distribution; Various types of capacitors; Biot-Savart law and Ampere's law; Types of magnetic materials.
5. Modern physics: The Bohr model and the hydrogen spectrum; Law of radioactive decay; Equivalence of mass and energy; Nuclear power.
Textbooks and Reference books:

Giancoli, Physics for Scientists and Engineers, 2000, Prentice Hall

Physics CAI in CD-ROM, 2000, USTC

Computer Simulation System for College Physics Experiment, Version 2.0 for Windows, 2000, USTC

Subject Title: Introduction to Hong Kong

Subject Code: APSS182
Credit Value: 3

Pre-requisite: Nil

Learning Activities:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture (with outings)</td>
<td>28</td>
</tr>
<tr>
<td>Tutorial and Student Presentation</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
</tbody>
</table>

Students would participate in six outings by which they are introduced to, on the one hand, the historic sites that could exhibit the traditional social lives of Hong Kong people and on the other the modern landscapes of Hong Kong.

The lectures aim to provide the students with an integrated knowledge required for the understanding and application of sociological concepts to understand the social and cultural development of Hong Kong.

Assessment:

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Assessment</td>
<td>100%</td>
</tr>
<tr>
<td>50% term paper</td>
<td></td>
</tr>
<tr>
<td>50% presentation</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Learning Outcomes:

Students are able to
a) describe the historical development of the pre-1841 Hong Kong;
b) understand the social life of the pre-1841 Hong Kong;
c) depict the historical trajectory of the colonial Hong Kong;
d) analyze the social, cultural and political aspect of the colonial Hong Kong;
e) understand the social life of the post-1997 Hong Kong.

Syllabus:

Students are required to attend seven tutorials and present their views on various aspects of the traditional and modern social lives in Hong Kong. They are encouraged to focus on the cultural and social aspects of Hong Kong society.

1. Pre-1841 Hong Kong: Wall Communities and the Form of Living
2. Visit: Markets at Yuen Long, Fanling and Sheung Shui
3. Domestic Villages and the Survival Strategies
4. Visit: Tai O – a fishing Village
5. 1841: The Coming of the Colonial Hong Kong
6. Visit: Central and Sheung Wan
7. The Chinese Communities
8. Visit: Wan Chai
9. Post-1950’s Hong Kong: the Minimally Integrated Social and Political System
10. Visit: Hong Kong Museum of History
11. Modern City Life of Hong Kong: Shopping Malls
12. Residence Patterns of Hong Kong People: Public Housing and HomeOwnership
13. Landscape of Hong Kong: Disney World, Tourism and Economic Development
14. Hong Kong’s Tomorrow

Textbooks and Reference books:

Lau, S.K., *et al.*, various years. *Indicators of Social Development: Hong Kong*. Hong Kong: Hong Kong Chinese University Press.

Various Years, *The Other Hong Kong Report*. Hong Kong: Hong Kong Chinese University Press.
Subject Title: Community Service
Subject Code: APSS183
Credit Value: 3

Pre-requisite: nil

Learning Activities:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>28</td>
</tr>
<tr>
<td>Tutorial and Student Presentation</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
</tbody>
</table>

The lectures aim to provide the students with an integrated knowledge required for the understanding and application of:

a. introducing knowledge and concepts which enable students to understand the interplay of self, community, and society
b. enhancing students’ sensitivity to a wide range of social issues in our society
c. helping students develop genuine concern for other individuals and increase the capacity of self-reflection, personal growth and developing inter-personal skills
d. nourishing civic consciousness by providing volunteer services to the vulnerable group in the community

Assessment:
In sum, the students’ performance in this subject will be assessed by the following methods:

1. **Pre-service analytical paper** – students are required to write a short paper of about 1000 words to demonstrate their understanding of the key concepts (i.e. civil society, citizenship, community care) and the relationships of these concepts to volunteer community services.
2. **Peer review on community services** – to be conducted within each service team on other team members’ levels of participation and contribution to the workshop.

The student will be given a **PASS** grade only if students fulfil the following subject requirements with satisfactory performance:

1. Punctual submission of pre-service analytical paper;
2. Fulfilment of 12 hours of experimental community services with proper attitudes;
3. Participation in the workshops and the peer assessment exercise as an active member of the service team.

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Assessment</td>
<td>100%</td>
</tr>
<tr>
<td>Examination</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>
Learning Outcomes:

On completing this subject, students are expected to:

a. Demonstrate understanding of the concepts of civil society, citizenship and community care, and be able to relate these concepts to volunteer community services.
b. Enhance self-understanding, self-confidence, leadership and interpersonal skills.
c. Experience a personal reflection on direct volunteer services to the community.

Teaching/Learning Methodology

Guided by the Experiential Learning Model (Kolb, 1984)\(^1\), we create a learning experience for the students through a process of abstract conceptualization, direct experience and reflective observation. This subject adopts an innovative teaching and learning method through a 2-stage learning path.

Pre-service Stage - Lectures are delivered to enlighten students on the interplay of self, community, and society by introducing concepts of civil society, citizenship, and community care. The lectures also introduce the six domains of social services in Hong Kong. Three pre-service workshops will be conducted to enhance students’ awareness on their own strengths and weaknesses, and to polish their leadership and interpersonal skills.

Service-provision Stage – Students will form themselves into small service teams (3 to 4 persons) and carry out 12 hours of experimental community services in one of the six service domains under the guidance and supervision of a tutor.

Syllabus:

The course will start with introductory lectures to enlighten students on the interplay of the self, community, and society, followed by workshops on self-development, communication skills and leadership skills. Subsequently, students will be introduced to six chosen domains of human service, followed by direct community services with guided supervision.

1. Pre-service stage - Introductory Lectures

 A. Lectures

 i. Interplay of self, community and society (5 lectures)
 To prepare students at the pre-service stage, lectures will be offered to discuss the interplay between self, community, and society. The concept of citizenship, civil society and community care will be introduced to help students appreciate the value of public participation. Through social exchange motivated by a sense of common values and civic duties rather than profits and personal gains, students will learn to appreciate the value of communal life and social responsibility.

 ii. Pre-service Workshops - Self, development and service (3 lectures)
 - Self-understanding
 - Communication and interpersonal skills
 - Leadership skills (e.g. problem solving, teamwork)

iii. Understanding the domains of human services (6 lectures)
 - Labour
 - Education
 - Housing
 - Health
 - Welfare
 - Environment

2. Experimental community services with guided supervision

 - students will be divided into small service teams and carry out 12 hours of experimental community services in selected domains. Guided supervision will be provided by the tutor of each service team.

Textbooks and Reference books:

<table>
<thead>
<tr>
<th>Essential</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bellah, Robert N.</td>
<td>Habits of the Heart – Individualism and Commitment in American Life</td>
<td>University of California Press</td>
<td>1985</td>
</tr>
<tr>
<td>Barnes, M.</td>
<td>Care, Communities, and citizens</td>
<td>London: Longman</td>
<td>1997</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supplementary</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Title</td>
<td>Publisher</td>
<td>Year</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Mills, C. Wright</td>
<td>Sociological Imagination Chapter 1</td>
<td>New York: Oxford University Press</td>
<td>2000</td>
</tr>
<tr>
<td>甘炳光等編</td>
<td>《社區工作技巧》</td>
<td>香港：香港中文大學出版社</td>
<td>1997</td>
</tr>
<tr>
<td>張君玟, 劉鈴佑譯</td>
<td>社會學的想象(Chinese version of Sociological Imagination)</td>
<td>臺北市:巨流圖書公司</td>
<td>1996</td>
</tr>
<tr>
<td>陳麗雲, 羅觀翠編</td>
<td>《社區工作 – 社區照顧實踐》</td>
<td>香港：香港社會工作人員協會</td>
<td>1989</td>
</tr>
<tr>
<td>黃慧惠著</td>
<td>《自我與人際溝通》</td>
<td>台北：張老師出版社</td>
<td>1999</td>
</tr>
<tr>
<td>吳、周、黃及梁</td>
<td>《認識自我與溝通技巧》 閱讀資料冊</td>
<td>香港：香港理工大學應用社會科學系</td>
<td>1998</td>
</tr>
<tr>
<td>鄭翠懷編</td>
<td>《人間掠影》</td>
<td>香港：突破出版社</td>
<td>1994</td>
</tr>
</tbody>
</table>
Subject Title: Elementary Cantonese (基礎粵語)
Subject Code: CLC250
Credit Value: 3

Pre-requisite: Nil

Learning Activities:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>32 hrs</td>
</tr>
<tr>
<td>Tutorial and Student Presentation</td>
<td>10 hrs</td>
</tr>
<tr>
<td>Total</td>
<td>42 hours</td>
</tr>
</tbody>
</table>

The lectures aim to provide the students with an integrated knowledge required for the understanding and application of Cantonese in their daily life.

Assessment:

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Assessment</td>
<td>100%</td>
</tr>
<tr>
<td>Examination</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Learning Outcomes:

1. 帮助学员掌握香港粵語的语音、词汇和语法的基本特点；
2. 帮助学员以粵語進行日常交際；
3. 通过學習粵語使学员了解香港社會文化並認識香港方言字。

Syllabus:

第一單元 簡介香港粵語的特點
-----粵語的拼音方案、粵語的語音
第二單元 介紹
重點學習： 常見姓氏
“先”字的句式
第三單元 問候
重點學習： 香港人常用的問候方式
比較格式
第四單元 打電話
重點學習： 香港人電話交談的方式
雙賓語句式
第五單元 約會
重點學習： 簡單式語氣助詞
第六單元 問路
重點學習： 方位表達法
第七單元 購物
重點學習：算錢的方式

第八單元 交通
重點學習：粵語“定”的動補結構式

第九單元 天氣
重點學習：天氣的表達

第十單元 飲食
重點學習：“之嘛”等複合式語氣助詞

第十一單元 香港
重點學習：將字句

第十二單元 商務
重點學習：單音節形容詞的重疊式

第十三單元 顯醫生
重點學習：意願的表達方式

第十四單元 工作——搵工跳槽
重點學習：表達同意的方式

第十五單元 報紙
重點學習：表達可能的方式

第十六單元 旅遊——海洋公園
重點學習：囑咐的表達方式

第十七單元 電視文化
重點學習：責備的表達方式

第十八單元 香港廟宇——黃大仙
重點學習：安慰的表達方式

Textbooks and Reference books:
鄭定歐等編 《粵語香港話教程》，三聯書店出版 2003 年 10 月
Subject Title: Information Technology Applications
Subject Code: COMP 101
Credit Value: 3

Pre-requisite: Nil

Learning Activities:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>14</td>
</tr>
<tr>
<td>Laboratory</td>
<td>42</td>
</tr>
<tr>
<td>Total</td>
<td>56</td>
</tr>
</tbody>
</table>

This subject provides students with the basic concepts of information technology and computing, as well as knowledge and practice on deploying often-used information technology applications.

Assessment:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coursework</td>
<td>100%</td>
</tr>
<tr>
<td>Examination</td>
<td>Nil</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Since this is an extremely hands-on course, the assessment will be 100% based on coursework (i.e. there will be no final exam).

Teaching/Learning Approach

The course material will be delivered as a combination of mass lectures and small group supervised laboratory sessions. In order to suit the needs of students from different fields of study, different laboratory groups covering different combinations of application software packages will be formed. Basically, the following types of software packages will be covered selectively.

1. Word processing (e.g., Word)
2. Spreadsheet (e.g., Excel)
3. Presentation software (e.g. Powerpoint)
4. Web page design tool (e.g., FrontPage)
5. Any one of the following:
 (i) Graphic software (e.g., CAD or 3D studio)
 (ii) Statistical software (e.g., SPSS)
 (iii) Web graphics (e.g. Flash)
 (iv) Others suggested by students

Learning Outcomes:

Upon completion of this subject, the students will be able to:
1. Have a basic understanding of how a computer works;
2. Understand the potentials of information technologies in business and industry;
3. Operate Windows and Linux systems at a basic level;
4. Use various software packages for word processing, presentation display and creating and maintaining spreadsheets (databases)
5. Use networking and internet tools.
6. Appreciate the Intellectual property rights and their protection; the role of HKG Intellectual property Dept. and the Business Software Alliance.

Syllabus:

Introduction to Computer Systems
Major components of computer systems: central processing units, storage devices and media, inputs / outputs; working principle of computers; types of CPU, memory, input / output devices.

System Software: MS Windows and Unix
Functions and operations of system software; basic features and commands of MS Windows and Unix / Linux.

Communication, Multimedia and the Internet
Communication and networking concepts; features of Internet; Internet resources; multimedia information and creation.

Introduction of Data Processing concepts and Small System Workshop Facilities.
Basic computer concepts; security, privacy and ethics with software; copyright and patent law; trade secrets and registered design;

IT Applications
Introduce typical applications of information technologies.

Other Application Software
Introduce other application software on computer.

Textbooks and Reference books:

Subject Title: Enterprise Information Technology
Subject Code: COMP 102
Credit Value: 3

Pre-requisite: Nil

Learning Activities:

Lecture 28 hours
Tutorial and Student Presentation 14 hours
Total 42 hours

This subject provides students with the concept of information systems and their role in organizations.

Lectures for delivery of conceptual knowledge and analytical techniques in case studies. **Tutorials** for discussion presentations of real business cases.

Assessment:

Coursework 40%
Examination 60%
Total 100%

In order to achieve a Pass grade (A+ to D) for the subject, a student must achieve a grade of at least D in both Final Examination and Coursework.

Learning Outcomes:

Upon completion of the subject, the students will be able to:

a) explain the information systems at various organizational levels;
b) be aware of appropriate IT for different information systems;
c) appreciate the use of strategic information systems for competitive advantages; and
d) understand ethical and social implications of information systems; and
e) appreciate the Intellectual property rights and their protection; the role of HKG Intellectual property Dept. and the Business Software Alliance.

Syllabus:

Data, Information and Knowledge
Concepts of data and information, methods to process data into information in organizations, transaction processing systems, data warehousing and data mining.

Decision Support for Business Intelligence
Decision and executive support systems, expert systems, computational intelligence techniques, uncertainty management, genetic algorithms for organizational modeling, neural networks and fuzzy logic for business applications.
Electronic Commerce/Business
Internet, business use of the world wide web, business network support, intranets and extranets, electronic banking, cyber trading and investing, publicity and marketing on the internet, smart card trends, smart card development methods and tools, security and cryptography.

Networked Enterprise
Managing cooperative work environment, workflow and business process engineering, groupware and platforms for collaborative work.

Information System Planning and Management
Security, control and fraudulence, information system project management, management of technical and user support services, software quality management, ISO 9000, the Capability Maturity Model (CMM) and other international standards.

Basic computer concepts; security, privacy and ethics with software; copyright and patent law; trade secrets and registered design;

Social and Legal Aspects of Information Systems
Professional code of practice, cyberspace and the law; electronic privacy; virtual marketplace; intellectual property in cyberspace; freedom of speech; adult materials; cyber-crimes.

Textbooks and Reference books:
4. Linthicum, David S., Enterprise Application Integration, Addison-Wesley, 2000
5. Jalote, Pankaj, Software Project Management in Practice, Addison-Wesley, 2002
Subject Title: Information Technology Systems
Subject Code: COMP 111
Credit Value: 3

Pre-requisite: Nil

Learning Activities:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>14</td>
</tr>
<tr>
<td>Laboratory</td>
<td>42</td>
</tr>
<tr>
<td>Total</td>
<td>56</td>
</tr>
</tbody>
</table>

This subject provides students with the data processing concepts as well as introduce an UNIX / PC computer workshop environment to students for practical applications of software and computing technologies. This is a practical subject in the use of workstations and micro-computers under different operating system platforms. After a briefing on the general data processing concept, students will be exposed to different types of software and packages.

Assessment:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coursework</td>
<td>100%</td>
</tr>
<tr>
<td>Examination</td>
<td>Nil</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Since this is an extremely hands-on course, the evaluation will be 100% based on coursework (i.e. there will be no final exam).

Learning Outcomes:

Upon completing this subject, the students will be able to:
1. Understand general data processing concepts;
2. Use workstations and micro-computers as a major resource in their daily work;
3. Demonstrate and use different types of software, packages and integrated business packages on both UNIX workstations and PC micro-computers;
4. Be aware of the opportunities and limitations provided by ready-made software;
5. Be able to do some basic C programming, as well as use some basic programming management tools.

Syllabus:

Introduction to the use of Window environment on the IBM PC
Basic features and commands of windows, file and program manipulations.

The UNIX Operation System
The philosophy of UNIX; shells; process; file systems; environment variable; file securities; miscellaneous commands and utilities; Use of shell scripts for running a series of UNIX commands; Bourne Shell vs C Shell; various shell script control commands, window environments on UNIX; openview and X.
Word Processing and Text Editing concepts
Document preparation on the PC Window and UNIX environment; features of WYSWYG; various operations for the manipulation of a document; graphs and equation editor; Chinese word processing. Use of text editor vi or emacs on UNIX.

Database Systems
Architecture of database systems; concepts and operations of database systems.

Basic Programming; Programming Projects management tools
Basic C programming; programming project management tools (eg make, SCCS and UNIX debuggers).

Spreadsheet Analysis and Graphical Presentation
Spreadsheet and graphic functions; worksheet query and decision making; time series analysis, & regression; business game. Graphics creation and manipulation; xfig as an example software on the x window; presentation graphics; Document planning; frame and picture manipulation

Data Communication, the Internet, and the World Wide Web
Basic networking concepts; TCP/IP and Novell; features of Internet and Internet address; GNU software Foundation; internet services and WWW; E-mail; Archie, Telnet, FTP, and Netscape; dial-in modem connections, communication and multimedia information Services (such as Flash technology). Basic information retrieval and search engine technology.

Textbooks and Reference books:

Subject Title: English for University Studies
Subject Code: ELC1001
Credit Value: 3

Pre-requisite: Nil

Learning Activities:

Seminar 42 hours

This course aims to help students study effectively in an English-medium learning environment and to enhance their proficiency in English.

The course is designed to enable students to use English effectively in the academic contexts they will encounter in their studies. The main emphasis is on improving students’ confidence and competence in grammar, vocabulary and pronunciation in these contexts.

The study method is primarily seminar-based and interactive learning techniques will be employed in activities such as discussions and role-plays. Learning and teaching materials developed by the English Language Centre will be used throughout this course. Teachers will recommend additional reference materials as required.

Assessment

Continuous Assessment 100%

Learning Outcomes

At the end of the course, the students are expected to be able to use the language and study skills needed to:

- participate in academic discussions
- plan, write and revise academic texts
- summarise and paraphrase material from written and spoken sources

Syllabus

This syllabus is indicative. The balance of the components, and the weighting accorded to each, will be based on the specific needs of the students.

1. Spoken communication
 Using English in social situations; understanding and practising the interpersonal and linguistic features of discussions (both formal and informal); analysing issues and problems critically.

2. Written communication
 Analysing and practising functions common in academic writing; understanding common patterns of organisation in academic writing; taking notes from written and spoken sources; developing paraphrasing, summarising and referencing skills; improving coherence and cohesion in writing; developing revision and proofreading skills; achieving appropriate tone and style in academic writing.
3. **Reading and listening**
Understanding the content and structure of information delivered both orally and in print form; reading and listening for different purposes.

4. **Language development**
Developing relevant grammar, vocabulary and pronunciation skills.

Reference books

Subject Title: English for Presentations and Discussions
Subject Code: ELC1002
Credit Value: 3

Pre-requisite: Nil

Learning Activities:

Seminar 42 hours

This course aims to develop those English language skills required of students to communicate effectively in formal and informal academic and social contexts.

The course is designed to introduce students to the oral communication skills that they will need to function effectively in their studies. These skills will also be beneficial to their future employment in any organisation where internal and/or external oral communication is conducted in English.

The study method is primarily seminar-based. Seminar activities will include discussions, role-plays, individual and group activities. Use will be made of information technology where appropriate. Learning and teaching materials developed by the English Language Centre will be used throughout this course. Teachers will recommend additional reference materials as required.

Assessment

Continuous Assessment 100%

Learning Outcomes

At the end of the course, students are expected to be able to use appropriate language skills to:

- deliver effective oral presentations
- participate effectively in formal and informal discussions
- display effective oral communication skills in contexts involving different levels of formality

Syllabus

This syllabus is indicative. The balance of the components, and the weighting accorded to each, will be based on the specific needs of the students.

1. **Oral presentations**
 Developing and practising the research and specific oral skills required to prepare and deliver effective oral presentations.

2. **Formal communication: discussions**
 Developing and practising the specific oral and aural skills required to participate effectively in formal interactions that would involve such activities as debates and seminar discussions.

3. **Informal communication**
 Developing and practising the specific oral and aural skills required to participate effectively in a variety of informal contexts.
4. **Language development**
 Developing relevant grammar, vocabulary and pronunciation skills.

Reference books

Subject Title: Exploration of the Cosmos
Subject Code: GEC225
Credit Value: 3
Medium of Instruction: English

Pre-requisite: Nil

Learning Activities:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>28</td>
</tr>
<tr>
<td>Tutorial and Student Presentation</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
</tbody>
</table>

This subject is a survey of modern astronomy. It introduces the student to the study of phenomena outside the confines of the earth.

Assessment:

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Assessment</td>
<td>100%</td>
</tr>
<tr>
<td>Examination</td>
<td>Nil</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

The continuous assessment comprises:

40% Tutorial Performance
Students organized in small study groups will prepare for and lead the rest of the tutorial into an in-depth study of a specific chapter (topic area) not covered in lecture. Emphasis will be on the cultivation of good study habits and rudimentary teaching skills (problem-based peer education). Individual mini-essays will be written on the same subject area.

20% Participation and Learning-to-learn
In support of learning-to-learn, individual students will be responsible for occasional assignments and weekly (short) written question exercises. Study groups will be responsible for weekly study meeting reports providing direct feedback to the instructor on what is and what is not understood.

40% Mid-term Quizzes
In support of encouraging the development of good study habits in the form of continuous study throughout the semester, there is no final exam. However, three midterm quizzes will be given with only the best two out of three counted.

Teaching/Learning Approach

Critical thinking will be modeled and encouraged in this study of science. Students will be introduced to the dialogues of theory and experiment / observation (i.e. the scientific method) and between pure and applied science. The fundamental scientific principles used to explore the universe will be introduced. Students will then participate in both lecture and tutorial format in a survey of the cosmos. Extensive use will be made of student participation demonstrations in lecture of scientific principles. In addition, a variety of multimedia visualization aides to illustrate astronomical phenomena will be used including graphs, drawings, photographs, computer animations, and video clips. Additionally,
software will be used to visually introduce students to objects of interest on the celestial sphere as well as the graphical presentation of important astronomical and physical laws.

Learning Outcomes:

At the end of this subject, students are expected to
1. have a basic understanding of the scientific method;
2. understand the underlying science principles by which astronomical observations and research are carried out;
3. understand some of the major historical trends, particularly with respect to the Copernican Revolution and the social consequences of modern astronomical thinking; and
4. have been exposed to the current understanding of such study areas as planetary geoscience, stellar evolution, galactic evolution, and cosmology.

Syllabus:

2. Light and Matter: The Inner Workings of the Cosmos.
5. Earth and Its Moon: Our Cosmic Backyard.
9. The Sun: Our Planet Star.
11. The Interstellar Medium: Birthplace of Stars.
15. Normal Galaxies: The Large-Scale Structure of the Universe.
16. Active Galaxies and Quasars: Limits of the Observable Universe.
17. Cosmology: The Big Bang and the Fate of the Universe.
18. Life in the Universe: Are We Alone?

Textbooks and Reference books:

Primary Reading:

Secondary Reading:

Subject Title: Ecological Perspectives – The Challenge of our Times
Subject Code: GEC230
Credit Value: 3
Medium of Instruction: English

Pre-requisite: Nil

Learning Activities:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>28</td>
</tr>
<tr>
<td>Tutorial and Student Presentation</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
</tbody>
</table>

Assessment:

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Assessment</td>
<td>100%</td>
</tr>
<tr>
<td>Examination</td>
<td>Nil</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

The continuous assessment comprises:

40% Tutorial Performance
Students organized in small study groups will prepare for and lead the rest of the tutorial into an in-depth study of ecosystem modeling not covered in lecture. Emphasis will be on the cultivation of good study habits and rudimentary teaching skills (problem-based peer education). A group summary report and individual mini-essays will be written on the same model that was studied in tutorial.

20% Participation and Learning-to-learn
In support of learning-to-learn, individual students will be responsible for occasional assignments and weekly (short) written question exercises. Study groups will be responsible for weekly study meeting reports providing direct feedback to the instructor on what is and what is not understood.

40% Mid-term Quizzes
In support of encouraging the development of good study habits in the form of continuous study throughout the semester, there is no final exam. However, three midterm quizzes will be given with only the best two out of three counted.

Teaching/Learning Approach

The analytic procedure of the scientific method will be emphasized. It will be demonstrated throughout as the means by which we can come to know so much about ourselves and the world around us. It is also the source of the technology that is being used to destroy our world. Individual expressions of thought and feeling to the material presented will be solicited in tutorial and consultation. Textual materials in support of lecture will be assigned. Use will be made of student participation demonstrations in lecture of scientific principles. In addition, a variety of multimedia visualization aides to illustrate ecological principles will be used including graphs, drawings, photographs, computer animations, and video clips. Tutorials will be devoted to an in-depth exploration of the modeling of simple ecosystems with an eye towards cultivating within the student
the ability to think critically about systems in general. Emphasis will be placed on helping the student to develop a greater sense of community with nature.

Learning Outcomes:

At the end of the subject, students are expected to
1. have a basic understanding of the origins of the Earth and its particular role in our solar system as the cradle of life;
2. understand the nature of ecosystem, biome, and biodiversity;
3. understand the natural history of the human species;
4. understand in broad terms the historical trends of collective human behaviour;
5. appreciate the peculiar position in history we live in, one in which we either change our behaviour or there will be no more history;
6. understand the different environmental perspectives and what they have to offer in terms of insight and solution.

Syllabus:

1. The Scientific Method – Empiricism, Theory, and Dialogue
2. Evolution – Natural Selection, Geo-history, and Human Evolution
4. The Mechanism of Evolution – Environmentally Selected Change
5. The Nature of an Ecosystem (tutorial)
 (i) Fundamental Paradigms – Energy, Matter, and Information
 (ii) Entropy and Transformity
 (iii) Computer Based Modeling of Systems
 (iv) Ecosystems and Biodiversity
 (v) Ecosystems Modeling and “What if” Analysis
6. The Problem of Human Population
7. Some Non-solutions to the Problem
8. Ideas Towards Real Solutions

Textbooks and Reference books:

Primary Reading:

Secondary Reading:
Subject Title: Introduction to Chinese Civilization
Subject Code: GEC232
Credit Value: 3
Medium of Instruction: Putonghua

Pre-requisite: Nil

Learning Activities:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>28</td>
</tr>
<tr>
<td>Tutorial and Student Presentation</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
</tbody>
</table>

Assessment:

<table>
<thead>
<tr>
<th>Assessment Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Assessment</td>
<td>100%</td>
</tr>
<tr>
<td>Examination</td>
<td>Nil</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

The continuous assessment comprises:

- Test 1: 20%
- Test 2: 20%
- Oral Presentation: 20%
- Written Report: 40%

Teaching/Learning Approach

Teaching will be conducted in both large class lectures and small group tutorials. Students are required to make tutorial presentations in small groups.

Learning Outcomes:

On completion of the subject, students are expected to:
1. understand the legacy of Chinese civilization;
2. comprehend the characteristics of Chinese civilization; and
3. identify the origins of modern Chinese thoughts and institutions.

Syllabus:

1. Introduction
2. Family and Kinship System
3. Empire and Emperor System
4. Education and Examination
5. Military Tradition
6. Traditional Clothing
7. Transportation
8. Architecture and Traditional Residence
9. Food and Chinese Culture
10. Folk, Religion and Secret Society
11. Law and Order
12. Conclusion

Textbooks and Reference books:

7. 蘇德昌。 (1975)。〈論貪污---中國近代史上一個關鍵性問題〉, 《抖擻》, 第七期, 頁 1-7。
8. 喻松青。 (1987)。《明清白蓮教研究》, 成都: 四川人民出版社。
9. 復旦大學歷史系編。 (1987)。《中國傳統文化的再估計》, 上海: 上海人民出版社。
10. 魏家麟編。 (1979)。《中國婦女史論集》, 台北: 牧童出版社。
11. 陰法魯、許樹安主編。 (1989)。《中國古代文化史》(三冊), 北京: 北京大學出版社。
12. 李治安等。 (1993)。《中國古代官僚政治》, 北京: 書目文獻出版社。
13. 遼爽康。 (1994)。《中國宗族社會》, 杭州: 浙江人民出版社。
14. 趙世瑜。 (1994)。《東晉燕閩社會》, 杭州: 浙江人民出版社。
15. 薛克籃。 (1994)。《佛教與中國文化》, 北京: 中國華僑出版社。
16. 杜正勝主編。 (1995)。《中國文化史》, 台北: 三民書局。
17. 吳英時。 (1995)。《歷史人物與文化危機》, 台北: 東大書籍公司。
19. 田繼周。 (1996)。《少數民族與中華文化》, 上海: 上海人民出版社。
20. 余振賢。 (1996)。《中國歷代政權與伊斯蘭教》, 銀川: 宁夏人民出版社。
21. 楊連達。 (1996)。《中國皇帝制度》, 廣州: 廣東教育出版社。
22. 馮友蘭。 (1996)。《中國哲學簡史》, 北京: 北京大學出版社。
23. 池子華。 (1996)。《中國近代流民》, 杭州: 浙江人民出版社。
24. 李學勤主編。 (1997)。《中國古代文明與國家形成研究》, 昆明: 雲南人民出版社。
25. 梁家麟。 (1997)。《徘徊於耶儒之間》, 台北: 宇宙光出版社。
26. 李華興。 (1997)。《民國教育史》, 上海: 上海教育出版社。
Subject Title: Introduction to Western Civilization
Subject Code: GEC233
Credit Value: 3
Medium of Instruction: English

Pre-requisite: Nil

Learning Activities:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>28</td>
</tr>
<tr>
<td>Tutorial and Student Presentation</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
</tbody>
</table>

Assessment:

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Assessment</td>
<td>100%</td>
</tr>
<tr>
<td>Examination</td>
<td>Nil</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

The continuous assessment comprises:

40% Tutorial Performance
Students organized in small study groups will prepare for and lead the rest of the tutorial in an in-depth study of some aspect of a western historic period originally introduced in lecture. The material studied, however, will be different in detail from what was presented in lecture while illustrating the zeitgeist of the period chosen. The intent will be to demonstrate the interplay of continuity and change. Emphasis will be on the cultivation of good study habits and rudimentary teaching skills (enquiry-based peer education). A group summary essay on this topic will be submitted following the tutorial.

20% Participation and Learning-to-learn
In support of learning-to-learn, individual students will be responsible for occasional assignments and weekly (short) written question exercises. Study groups will be responsible for weekly study meeting reports providing direct feedback to the instructor on what is and what is not understood.

40% Writing
In support of encouraging the development of good study habits in the form of continuous study throughout the semester, there is no final exam. Short in-class quizzes will be randomly given. The development of skills in academic writing will be emphasized through two written assignments in the form of a short paper (movie or documentary review) and a long paper (book report).

Teaching/Learning Approach

Good history involves story telling, the stories we tell ourselves and those we leave behind for future generations. Story telling is a uniquely human pastime. However, the study of history is empirical, it is evidence-based. Thus, students will from time to time be introduced to or challenged to see the supporting evidence of an historical record. Throughout, the recurring and contrasting themes of continuity and change will be examined as the story of Western Civilization progresses through the
various periods. Emphasis will be placed upon the identification of the worldviews of different groups and how they contributed to the zeitgeist characteristic of a given period. Individual expressions of thought and feeling to the material presented will be solicited in tutorial and consultation. Textual materials in support of lecture will be assigned. Use will be made of a variety of multimedia visualization aides to illustrate various formative developments within Western Civilization to include geophysical and political maps, timelines, historically relevant art, drawings, photographs, computer animations, and documentary video clips. The intent will be to help students develop a greater sense of history through evidence-based analysis, to learn to think critically about historical claims, and to reflect upon how this impacted subsequent history and the modern world in which they live.

Learning Outcomes:

At the end of the subject, students are expected to
1. understand the nature of civilization in general and of Western Civilization in particular;
2. have developed basic skills in reading history and in working with questions;
3. understand the importance of evidence in the support of historical claims;
4. comprehend some of the major precepts of the Western mind in contrast with that of the East; and
5. be able to relate to the major historical events that shaped the development of Western Civilization.

Syllabus:

1. An Introduction to History – Continuity and Change
2. An Overview of What is Meant by “Western” and “Civilization”
3. The Ancient Greeks – Studies in Variety
4. Rome – Republic and Imperial
5. The Middle Ages – Faith, Disintegration, and Re(dis)covery
6. The Renaissance and Reformation
7. The Age of Reason and Revolution
8. The Industrial Revolution, Romanticism, and Human Displacement
9. The Twentieth Century and World Conflict

Textbooks and Reference books:

Primary Reading:

Secondary Reading:
Subject Title: History of Hong Kong
Subject Code: GEC270
Credit Value: 3
Medium of Instruction: Putonghua

Pre-requisite: Nil

Learning Activities:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>28</td>
</tr>
<tr>
<td>Tutorial and Student Presentation</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
</tbody>
</table>

This subject examines the development of Hong Kong from its inception from an historical perspective. Students will explore a variety of topics related to 19th and 20th century Hong Kong by focusing on the transformation of its administrative system, its economic setting, the social structure, its cultural role and its relations with the Chinese mainland. The role of Hong Kong in the rise of modern China will be discussed.

Assessment:

<table>
<thead>
<tr>
<th>Assessment Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Assessment</td>
<td>100%</td>
</tr>
<tr>
<td>Examination</td>
<td>Nil</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

The continuous assessment comprises:

- Test 1: 25%
- Test 2: 25%
- Oral Presentation: 20%
- Written Report: 30%

Teaching/Learning Approach

The basic contents of this subject are presented in lectures with the help of notes, overhead and computer projection, video material and other teaching aids. Required readings will be kept to 25-30 pages per week. A list of recommended readings will be provided for those interested. Where appropriate, visits to museums and other heritage sites will be paid to understand how history and heritage are preserved and interpreted in Hong Kong. For tutorials, students are required to write a report on a chosen topic and to make an oral presentation in small group. Basic skills in conducting historical research, i.e. collecting and analyzing raw data, as well as fieldwork study, will be used.

Learning Outcomes:

On completion of this subject, students are expected to:

1. understand how Hong Kong was transformed from fishing villages into a modern metropolis; and
2. understand the social and economic factors that contributed to its development.
Syllabus:

1. Introduction
 Theories, methodology, study sources and problems in interpreting Hong Kong’s history

2. Hong Kong prior to British arrival
 Prehistoric Hong Kong
 Development from the Qin and Han dynasties to the mid-Qing dynasty
 The lineages and clans in Hong Kong region before British rule

3. The Opium Wars and the cession of Hong Kong
 Early maritime trade and Anglo-Chinese relations
 The First Opium War and the British occupation of Hong Kong

4. The establishment of British colonial administration
 The structure of government administration
 Major political issues before 1941

5. Early growth of the city and economic development
 Population growth and urbanization
 China trade and development as an entrepot

6. The emergency and changes of Hong Kong society
 The formation of Chinese community
 The rise of Chinese merchants
 Western and Chinese social institutions

7. Political interactions between mainland and Hong Kong
 Dr. Sun Yat-sen and revolutionary activities in Hong Kong
 Hong Kong and Chinese nationalist movement
 Hong Kong and Guangdong politics

8. The Japanese rule 1941-1945
 The Battle of Hong Kong
 The Japanese occupation of Hong Kong
 Resistance movement and the return of British rule

9. Political and economic development in post-war Hong Kong
 Political changes since 1945
 Industrial development in the 1950s-70s
 Hong Kong as a major financial center

10. China-Hong Kong relations
 Relations between communist China, Britain and Hong Kong in the 1950s
 The impact of Cultural Revolution
 The open door policy and impact on Hong Kong economy

11. The social and cultural matrixes of Hong Kong people
 Development of social welfare, education and culture in post-war period
 The search for identity of Hong Kong people

Textbooks and Reference books:

5. Endacott, G.B. (1973) *A history of Hong Kong*, (Hong Kong: Oxford University Press)
8. Faure, David (2003) *Colonialism and the Hong Kong Mentality*, (Hong Kong: Centre of Asian Studies, University of Hong Kong)
13. Ng, Lun Ngai-ha (1986) *Historical traces of Sun Yat-sen’s activities in Hong Kong, Macao and overseas*, (Hong Kong: Chinese University Press)
18. 香港大學亞洲研究中心香港文化及社會創意教學計劃（2000-2004）《香港讀本系列》十冊（香港：牛津出版社）
19. 李培德（2001）《香港史研究書目題解新編》（香港：三聯書店）
20. 王廣武（1997）《香港史新編》（上、下冊）（香港：三聯書店）
21. 余綰武、劉存寔（1994）《十九世紀的香港》（香港：麒麟）
22. 余綰武、劉存寔（1995）《二十世紀的香港》（香港：麒麟）
23. 劉蜀永（1998）《簡明香港史》（香港：三聯書店）
24. 蔡榮芳（2000）《香港人之香港史》（香港：牛津大學出版社）
25. 王宏志（2000）《歷史的沉重：從香港看中國大陸的香港史論述》（香港：牛津大學出版社）
26. 高添強、唐卓敏（1995）《圖片香港日佔時期》（香港：三聯書店）
27. 鄭開領、陸曉敏（1996）《粵港澳近代關係史》（廣東人民出版社）
28. 劉兆佳（1988）《香港的政制改革與政治發展》（香港：廣角鏡出版社）
29. 陸鴻基（2003）《從榕樹下到電腦前：香港教育的故事》（香港：進一步出版社）
Subject Title: Appreciation of Chinese Art and Design
Subject Code: GEC 2606
Credit Value: 2
Medium of Instruction: English

Pre-requisite: Nil

Learning Activities:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>28</td>
</tr>
<tr>
<td>Total</td>
<td>28</td>
</tr>
</tbody>
</table>

Assessment:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Assessment</td>
<td>100%</td>
</tr>
<tr>
<td>Examination</td>
<td>Nil</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Pass or Fail – Students will be required to pass both of the following two components in order to get a pass for the subject:
1. Participation
2. Other assessment components

Teaching/Learning Approach

Besides keynote lectures, images and video-based study materials will be used. Assignments are geared to appreciation and application of Chinese art and design. Students are encouraged to work on a specific topic to arouse their reflective thinking and aesthetic sensibility of Chinese material culture.

Learning Outcomes:

On completion of this subject, students are expected to:
1. have demonstrated a basic knowledge about the characteristics of Chinese art and design;
2. have cultivated a basic appreciation of aesthetic sensibility with respect to both Chinese art work and craft work;
3. able to explain something of the sense of Chinese beauty aimed at stimulating their own creative work;
4. identify and analyze the deeper meanings of Chinese patterns and motifs;
5. integrate Chinese art and design with Chinese myths, religion and popular belief towards an understanding of Chinese culture; and
6. to be able to decode the images of Chinese artworks and to know their symbolic meanings.

Syllabus:

1. The universal characteristics of Art and Design in the context of Chinese Culture.
2. Chinese Design as ornamental motifs in different craft works.
3. Chinese Bronze art decoration and their ritual symbolism.
4. Chinese Gardening and its concept of space as an aspect of design.
5. Chinese Ink Painting in modern form.
8. Chinese Auspicious Patterns applied in design products.

Textbooks and Reference books:

Essential Readings:
1. 翟陽光、李松編 (2003):《中國設計藝術史綱》。湖南:湖南美術出版社

Reference List:
1. 趙廣超 (2004):《筆紙中國畫》。香港:三聯書店
2. 莊申編著 (1998):《根源之美》。台北:東大圖書股份公司
3. 王抗生、曾協泰主編 (1990)《中國傳統圖案系列》。香港:萬里書店有限公司，輕工業出版社
4. 王朝聞主編 (1995):《中國民間美術全集（1-14）》濟南:山東教育出版社，友誼出版社
5. 吳山主編 (1988):《中國工藝美術大辭典》。南京:江蘇美術出版社
6. 王子雲著 (1988):《中國雕塑藝術史（上、下）》。北京:人民美術出版社