<table>
<thead>
<tr>
<th>Subject Description Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Code</td>
</tr>
<tr>
<td>Subject Title</td>
</tr>
<tr>
<td>Credit Value</td>
</tr>
<tr>
<td>Level</td>
</tr>
</tbody>
</table>
| **Pre-requisite / Co-requisite/ Exclusion** | BRE349
Nil
Nil |
| **Objectives** | 1. Provide further knowledge of building services engineering systems, including the ventilation and air conditioning system, acoustics and vibration control systems, and information systems;
2. Understand the importance of the quality of installation and proper co-ordination on the overall performance and maintainability of buildings;
3. Provide students an understanding that sustainability can be achieved by environmental-friendly design of building services systems. |
| **Intended Learning Outcomes** | *Students will demonstrate their ability to:*
a. Understand the principles and various attributes of ventilation and air conditioning systems;
b. Have an understanding of the importance of energy conservation in buildings for environmental protection, and the use of renewable resources in buildings for sustainability;
c. Perform analyses on acoustic and vibration control of building services systems;
d. Have an understanding of the concepts of green buildings, intelligent building, building automation, and information system of buildings;
e. Properly co-ordinate the installation, commissioning and maintenance of various building services systems; and perform life-cycle cost analysis for selection of appropriate building services systems. |
| **Subject Synopsis/Indicative Syllabus** | Integrated design: factors affecting selection of services/systems. Provision of space in the building to accommodate building services. Structural integrity of building services equipment. Sound and vibration attenuation features. Provisions for safe operation and maintenance.
Building services engineering system for intelligent buildings: introduction to information transmission systems, communication and protection system, call systems, public address system and Building automation/management systems.
The concepts and importance of energy conservation and energy efficiency for environmental protection, environmental protection and maintenance of building services systems, selection of environmentally friendly products and materials used in building services systems. |
Co-ordination and management of design and installation of various building services systems during the design and construction stages in particular the builder’s works; and testing and commissioning of building services systems.

Indoor air quality and sick building syndrome.

The impacts of life-cycle-cost on planning and implementation. An appreciation of capital and operating costs. Implication of low cost inefficient equipment, poor installation, inadequate access for maintenance.

Teaching/Learning Methodology

The subject can be divided into three main parts; introduction to complex building services systems; management, co-ordination, installation and maintenance of the building services systems; and introduction to sustainable buildings and environmental-friendly design of building services systems.

A “case oriented” approach is to be adopted for teaching the subject; A number of up-to-date case studies on building services systems of high-rise buildings are used to illustrate the current state-of-the-art on the design and operation of complex building service systems. Where applicable, practitioners from the industries will be invited to present lecture on the management of the building services installations and on operation and maintenance of building services systems.

The subject will be delivered through lectures, laboratories (where applicable) and small groups tutorials. The lectures and laboratories aim at introducing theories, concepts and practices whereas tutorials are for in-depth small group discussions.

Assessment Methods in Alignment with Intended Learning Outcomes

<table>
<thead>
<tr>
<th>Specific assessment methods/tasks</th>
<th>% weighting</th>
<th>Intended subject learning outcomes to be assessed (Please tick as appropriate)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>1. Coursework</td>
<td>30</td>
<td>✓</td>
</tr>
<tr>
<td>2. Examination</td>
<td>70</td>
<td>✓</td>
</tr>
<tr>
<td>Total</td>
<td>100 %</td>
<td></td>
</tr>
</tbody>
</table>

Explanation of the appropriateness of the assessment methods in assessing the intended learning outcomes:

Examination and coursework will contribute 70% and 30% of the overall mark for the subject respectively. The coursework mark will be based on the assessments of assignments, presentations, and in-class tests. One of the assignments will be in the form of case study; students will be asked to carry out a critical investigation of the building services systems of a building of their choice and to comment on the systems adopted, the installation and integration with other systems. Another assignment will be on engineering analysis of building services systems. Both the coursework and examination assessment methods are intended to ensure the students achieve the learning objectives set, and assist learning through constructive feedback.
Student Study Effort Expected

<table>
<thead>
<tr>
<th>Class contact:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>21 Hrs.</td>
</tr>
<tr>
<td>Tutorials</td>
<td>21 Hrs.</td>
</tr>
</tbody>
</table>

Other student study effort:

| | 78 Hrs. |

Total student study effort 120 Hrs.

Reading List and References

Reading List:

Recommended:

Supplementary: